MARL6002A
Apply intermediate principles of marine engineering thermodynamics

This unit involves the skills and knowledge required to apply intermediate principles of marine engineering thermodynamics to perform calculations and explain the operation of marine machinery, including engines, compressors, steam plants, refrigeration and air-conditioning units.

Application

This unit applies to the work of a Marine Engineers Class 2 on commercial vessels greater than 3000 kW and forms part of the requirements for the Certificate of Competency Marine Engineer Class 2 issued by the Australian Maritime Safety Authority (AMSA).


Prerequisites

Not applicable.


Elements and Performance Criteria

1

Calculate heat mixtures involving water equivalent, change of phase, and feed heating

1.1

Key terms associated with heat transmission are explained

1.2

Heat transfer is calculated between liquids and solids using water equivalent

1.3

Flow is differentiated from non-flow heating and cooling processes

1.4

Effects of superheating and sub-cooling on steam plant efficiency are outlined

1.5

Mass balance throughout a steam plant cycle is constructed and effects of pressure and temperature on cycle efficiency are analysed

2

Determine fluid properties of steam

2.1

Relationship between saturated and superheated steam, including dryness fraction, is explained

2.2

Regions on a temperature/enthalpy diagram are constructed and identified

2.3

Steam tables are used to determine fluid properties

2.4

Changes of enthalpy throughout a system are identified

2.5

Operating principles and application in steam plants of throttling, separating and combined throttling, and separating calorimeters are explained

2.6

Calorimeters are applied to determine dryness fraction of steam

3

Calculate boiler efficiency and boiler water density

3.1

Efficiency of saturated and superheated steam boilers is calculated

3.2

Where loss of efficiency occurs is shown

3.3

Concept of parts per million for density of boiler water is explained

3.4

Changes in boiler water density due to contaminated feed are calculated

3.5

How acceptable dissolved solids and water levels may be maintained in a boiler is shown

4

Determine steam turbine velocity

4.1

Principles and differences between pressure and velocity changes in reaction and impulse steam turbines are explained

4.2

Velocity diagrams to calculate steam velocity at exit of nozzles and blades are applied

4.3

Graphical and mathematical methods to determine blade angle, steam velocity, thrust, power, and efficiency of single stage impulse and reaction steam turbines are applied

5

Calculate calorific value and the air fuel ratio for solid and liquid fuels

5.1

Elements and compounds present in fuel and the products of combustion are evaluated

5.2

Air/fuel ratio, gravimetric and volumetric analysis are explained

5.3

Chemical equations for combustion elements and compounds are developed and elements of combustion are analysed

5.4

Bomb calorimeter is used to find calorific value of a fuel

5.5

Formula to calculate calorific value of a fuel from mass analysis of fuel is applied

5.6

Air required for combustion is calculated

6

Calculate thermal expansion

6.1

Coefficient of linear expansion and its significance to different materials is explained

6.2

Clearances and shrunk fit allowances are calculated

6.3

Stresses generated with restricted expansion are calculated

6.4

Volumetric expansion of solid and liquids, and allowance required for fluid expansion in tanks and systems is calculated

7

Apply gas law equations

7.1

Compression and pressure ratio is explained and related to combined gas law equation

7.2

Combined gas law equation is applied to constant volume and constant pressure processes

7.3

Specific gas constant of a gas or mixture of gases is calculated

7.4

Differentiation is made between specific heat of gases, ratio of specific heats, work and change in internal energy

7.5

Changes in internal energy associated with specific heat of gases, ratio of specific heats and work are calculated

8

Calculate gas conditions, work and thermal efficiency of internal combustion engines

8.1

Processes associated with expansion and compression of gases are explained

8.2

Gas conditions and index of compression at end of each process are determined

8.3

Work formula is derived for each process and derived formula is applied to calculate work and power per cycle

8.4

Air standard cycle is applied to determine amount of fuel consumed and work produced by an internal combustion engine

8.5

Differentiation is made between air standard efficiency and thermal efficiency

8.6

Thermal efficiency of engine cycles is calculated

9

Perform calculations related to refrigeration and air conditioning cycles

9.1

Pressure/enthalpy diagram is applied to describe the refrigeration cycle

9.2

Importance of superheating and under-cooling in determining stability and well-functioning of refrigeration systems is explained

9.3

Properties and hazards of refrigerants used in refrigeration and air conditioning systems are identified

9.4

Refrigeration tables are applied to calculate refrigeration effect, cooling load and coefficient of performance

9.5

Basic air conditioning cycles are explained

9.6

Wet and dry bulb temperatures are explained

9.7

Humidity conditions are determined using psychrometric charts

10

Solve heat transfer problems involving flat plates and thin cylinders

10.1

Different forms of heat transfer are identified

10.2

Heat flow through composite flat plates using thermal conductivity is calculated

10.3

Interface temperatures of composite flat layers are calculated

10.4

Radial conduction of heat through a thin cylinder is calculated

11

Solve problems related to single and multi stage air compression

11.1

Pressure–volume diagram is applied to describe operating cycle of reciprocating compressors

11.2

Work done by constant pressure, isothermal processes and polytropic processes in reciprocating compressors is calculated

11.3

Effect of clearance volume on efficiency of reciprocating compressors is explained

11.4

Volumetric efficiency and free air discharge in reciprocating compressors is calculated

11.5

Volume, mass flow and temperature are calculated at completion of each process in reciprocating compressors

11.6

How inter-cooling and after-cooling affects overall efficiency of reciprocating compressors is explained

11.7

Quantity of cooling water required by reciprocating compressors is calculated

12

Perform calculations related to engine power and heat balances

12.1

Indicator and timing diagrams for internal combustion engines are plotted

12.2

Formula is applied to solve problems related to indicated power of internal combustion engines

12.3

Formula is applied to solve problems related to brake power of internal combustion engines

12.4

Morse test is applied to determine the indicated power of internal combustion engines

12.5

Tabular and graphical heat balance diagrams are applied to calculate mechanical, thermal and overall efficiencies of internal combustion engines

Required Skills

Required Skills:

Assess own work outcomes and maintain knowledge of current codes, standards, regulations and industry practices

Explain basic principles of marine engineering thermodynamics

Identify and apply relevant mathematical formulas and techniques to solve basic problems related to marine engineering thermodynamics

Identify and interpret numerical and graphical information, and perform basic mathematical calculations related to marine engineering thermodynamics, such as gas expansion and contraction, heat transfer, and thermal efficiency

Identify, collate and process information required to perform basic calculations related to marine engineering thermodynamics

Impart knowledge and ideas through verbal, written and visual means

Read and interpret written information needed to perform basic calculations related to marine engineering thermodynamics

Use calculators to perform mathematical calculations

Required Knowledge:

Air compressor:

components

faults and hazards

first law of thermodynamics

operating cycle of reciprocating air compressors

performance characteristics

property diagrams

types

uses

working principles of reciprocating compressors

Enthalpy

Expansion and compression of gases

Gas laws

Internal combustion engines:

second law of thermodynamics

heat engine cycles

operating principles of two stroke and four stroke internal combustion engines

performance characteristics

improvements

Principles of:

heat transfer

refrigeration

Refrigeration and air conditioning cycles

Steam plants

System International (SI) units

Thermal efficiency calculations

Thermodynamic principles

Work health and safety (WHS)/occupational health and safety (OHS) requirements and work practices

Evidence Required

The evidence guide provides advice on assessment and must be read in conjunction with the performance criteria, the required skills and knowledge, the range statement and the Assessment Guidelines for the Training Package.

Critical aspects for assessment and evidence required to demonstrate competency in this unit

The evidence required to demonstrate competence in this unit must be relevant to and satisfy all of the requirements of the Elements, Performance Criteria, Required Skills, Required Knowledge and include:

making accurate and reliable calculations

solving problems using appropriate laws and principles.

Context of and specific resources for assessment

Performance is demonstrated consistently over time and in a suitable range of contexts.

Resources for assessment include access to:

industry-approved marine operations site where intermediate principles of marine engineering thermodynamics can be applied

diagrams, specifications and other information required for performing intermediate calculations related to marine engineering thermodynamics

technical reference library with current publications on intermediate marine thermodynamics

tools, equipment and personal protective equipment currently used in industry

relevant regulatory and equipment documentation that impacts on work activities

range of relevant exercises, case studies and/or other simulated practical and knowledge assessments

appropriate range of relevant operational situations in the workplace.

In both real and simulated environments, access is required to:

relevant and appropriate materials and equipment

applicable documentation including workplace procedures, regulations, codes of practice and operation manuals.

Method of assessment

Practical assessment must occur in an:

appropriately simulated workplace environment and/or

appropriate range of situations in the workplace.

A range of assessment methods should be used to assess practical skills and knowledge. The following examples are appropriate to this unit:

direct observation of the candidate applying intermediate principles of marine engineering thermodynamics

direct observation of the candidate applying relevant WHS/OHS requirements and work practices.

Guidance information for assessment

Holistic assessment with other units relevant to the industry sector, workplace and job role is recommended.

In all cases where practical assessment is used it should be combined with targeted questioning to assess Required Knowledge.

Assessment processes and techniques must be appropriate to the language and literacy requirements of the work being performed and the capacity of the candidate.


Range Statement

The range statement relates to the unit of competency as a whole. It allows for different work environments and situations that may affect performance. Bold italicised wording, if used in the performance criteria, is detailed below.

Key terms may include:

Enthalpy of fusion

Evaporation

Sensible heat

Transfer of heat energy

Processes may include:

Adiabatic

Isothermal

Polytropic

Fluid properties include:

Density

Dryness faction

Enthalpy of water

Pressure

Saturated steam

Specific volume

Superheated steam

Temperature

Forms of heat transfer may include:

Conduction

Convection

Radiation


Sectors

Not applicable.


Employability Skills

This unit contains employability skills.


Licensing Information

Not applicable.